Section 3.8

Newton's Method for Approximating the Zeros of a Function

Let $f(c)=0$, where f is differentiable on an open interval containing c. Then, to approximate c, use these steps.

1. Make an initial estimate x_{1} that is close to c. (A graph is helpful.)
2. Determine a new approximation

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} .
$$

3. When $\left|x_{n}-x_{n+1}\right|$ is within the desired accuracy, let x_{n+1} serve as the final approximation. Otherwise, return to Step 2 and calculate a new approximation.
1) Calculate three iterations of Newton's Method to approximate a zero of $f(x)=x^{2}-3$. Use $x_{1}=2$ as the initial guess. Fill in the table below to help you.

\boldsymbol{n}	x_{n}	$f\left(x_{n}\right)$	$f^{\prime}\left(x_{n}\right)$	$\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$	$x_{\boldsymbol{n}}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
1					
2					
3					

2) Use Newton's Method to approximate the zeros of $f(x)=x^{3}-2 x^{2}+4 x+2$. Continue the iterations until two successive approximations differ by less than 0.0001 . As in the example, graph $f(x)$ on your calculator to get a good first approximation of the zero. Fill in the table below to help.

\boldsymbol{n}	$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)$	$\boldsymbol{f}^{\prime}\left(x_{\boldsymbol{n}}\right)$	$\frac{\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)}{\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)}$	$\boldsymbol{x}_{\boldsymbol{n}}-\frac{\boldsymbol{f}\left(x_{\boldsymbol{n}}\right)}{\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)}$
1					
2					
3					
4					

